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Abstract—In order to fully realize the potential of unmanned
systems, vehicles must carry sensors to observe the underwater
environment, and sensor data must be processed in real-time for
systems to intelligently interpret the environment and adapt their
behavior accordingly. Interferometric synthetic aperture sonar
(InSAS) is an ideal tool for seabed survey operations because
of its superior area coverage rate and resolution compared
to conventional sidescan and multibeam sensors. Due to the
intensive nature of forming two SAS images per side of the vehicle
plus bathymetric processing, InSAS data have traditionally been
processed offline in a non-real-time environment after completion
of the mission. Kraken Robotic Systems have been performing
real-time InSAS processing of seabed imagery and bathymetry
for the past five years using a variety of graphics processing units
(GPUs). Here, we demonstrate that recent advances in the com-
putational efficiency of InSAS algorithms and the development
of ultra-low power GPUs for embedded systems have combined
to create the situation where it is now possible to perform the
complete InSAS processing chain at full resolution in real-time
using extremely low energy consumption.

Index Terms—synthetic aperture sonar, interferometry, real-
time, graphics processing unit, low power

I. INTRODUCTION

The ocean floor is largely unexplored and unmapped, yet
seabed mapping is important for many applications such as oil
and gas extraction, pipelines, communications cables, mineral
extraction, habitat mapping, and underwater warfare [1]. For
example, searching for stealthy mines on the seafloor is a key
activity in naval mine countermeasures (MCM). Unmanned
underwater vehicles have great potential to improve the effi-
ciency and safety of seabed survey operations. In order to fully
realize the potential of unmanned systems, vehicles must carry
sensors to observe the underwater environment, and sensor
data must be processed in real-time for systems to intelligently
interpret the environment and adapt their behavior accordingly.
For the MCM example, upon detecting a mine-like object on
the seafloor, a vehicle might update its trajectory to obtain
additional imagery or relay a message to another inspection
and disposal system for further action.

Interferometric synthetic aperture sonar (InSAS) is an ideal
tool for seabed survey operations because of its superior
area coverage rate and resolution compared to conventional
sidescan and multibeam sensors. InSAS provides seabed im-
agery with high image resolution, which is constant across
the entire swath, and the ability to generate highly accurate
bathymetry that is perfectly co-registered with the correspond-

Fig. 1. Kraken AquaPix® InSAS installed and deployed on a REMUS 600
AUV. The forward Y-fin stability and control module, as used for other SAS
systems [6], is not required.

ing imagery. An InSAS consists of two vertically separated
rows of transducers. A complex SAS image is formed for each
row, and the two images are cross-correlated to obtain a high
resolution map of relative bathymetry (i.e. the depth of the
seabed relative to the vehicle trajectory). Due to the intensive
nature of forming two SAS images per side of the vehicle
plus bathymetric processing, InSAS data have traditionally
been processed offline in a non-real-time environment after
completion of the mission. Furthermore, when SAS images
are computed onboard the vehicle, they are commonly formed
at a degraded resolution for real-time implementation [2]. It is
then necessary to reprocess the entire data set offline to obtain
the full resolution.

InSAS processing is well suited to hardware acceleration
using graphics processing units (GPUs). One attractive feature
of GPU processing is the scalability of processing power. One
may therefore achieve real-time performance by applying a
sufficiently powerful processor. For example, faster than real-
time SAS processing is obtained in [3] using 8 server-grade
GPUs. However, such an approach is wholly unsuitable for
autonomous underwater vehicles (AUVs) where the power
consumption of an 8 GPU SAS processor would severely limit
the endurance of a battery powered vehicle. Furthermore, re-
sults published in [2]–[4] only address the real-time formation
of a single SAS image per side with no real-time bathymetry.



Fig. 2. SAS image mosaic from the target area near Jamestown Island.

Kraken Robotic Systems have been performing real-time
InSAS processing (imagery and bathymetry) for the past
five years using a variety of embedded GPUs similar to
the hardware in high performance notebook computers [5].
In this paper, we demonstrate that recent advances in the
computational efficiency of InSAS algorithms and the devel-
opment of ultra-low power GPUs for embedded systems have
combined to create the fortuitous situation where it is now
possible to perform the complete InSAS processing chain at
the full resolution in real-time using extremely low energy
consumption, to the point where the energy “cost” of real-time
processing is negligible. Results are presented for a dataset
collected from the AquaPix® InSAS installed on a REMUS
600 AUV. This dataset, collected in 2012, has served as a
processing benchmark for various iterations of hardware and
software development.

Using the sonar matched filter implementation as an ex-
ample, we illustrate several techniques to optimize the per-
formance of GPU computation including stream processing,
concurrent data transfer and processing, data ordering for fast
Fourier transforms, and memory alignment. Execution times
and output from the NVIDIA Visual Profiler are presented
for two types of GPUs, a desktop NVIDIA GTX 670 and a
Jetson TX1, to illustrate trade-offs in processing power and
memory bandwidth for embedded applications. It is shown
that Kraken’s INSIGHT software performs faster than real-
time full resolution InSAS processing on the ultra-low power
Jetson TX1 using a power consumption of only 7.5 watts
during processing.

II. DATA COLLECTION

A. Sea Trial

In October 2012, the Naval Undersea Warfare Center
(NUWC) Division, Newport, RI, and Kraken Robotic Systems
entered a cooperative research and development agreement to
evaluate the performance of the AquaPix® InSAS deployed
from a REMUS 600 AUV [6]. The sonar and AUV are shown
in Fig. 1. During 26 missions conducted over six days of
testing, NUWC and Kraken collected significant amounts of
InSAS data in Narragansett Bay and in Block Island Sound
against both deployed targets and targets of opportunity [7].
The deployed target field, west of Jamestown Island and south
of the Jamestown Bridge, is in water that is as deep as 28 m.

Fig. 3. Seabed image of lobster traps on a sandy seabed.

Fig. 4. Co-registered relative bathymetry corresponding to Fig. 3.

The area contained a number of man-made objects of varying
sizes and shapes that were deployed at marked positions
specifically for this test, providing ground truth for target
detection and identification. The InSAS sensor demonstrated
the capability of generating high-resolution imagery to ranges
as distant as 220 m. A mosaic with targets highlighted at 200 m
range is shown in Fig. 2.

The SAS image for the processing benchmark is shown in
Fig. 3. The image consists of numerous lobster traps on a
sandy seabed with a maximum range of 180 m corresponding
to a vehicle altitude of 18 m. The co-registered bathymetry
in Fig. 4 shows a known seabed depression that compares
favorably with bottom maps obtained from an independent
bathymetric survey. The locations of lobster traps, visible in
the bathymetry, also correlate well with the corresponding
locations in the SAS imagery.

B. Sonar Description

AquaPix® is a wideband 300 kHz InSAS manufactured
by Kraken Robotic Systems featuring a dual-row design
for multipath suppression [8]. The InSAS consists of one
transmitter module and four receiver modules. Each receiver
module has a length of 53.3 cm, which is divided into 16
acoustic elements along track. Included in each module (both
transmitter and receivers) are two rows of ceramic elements
that are operated in distinct frequency bands. The short range
lower row is angled down at a depression angle of 17.5◦

relative to horizontal, whereas the long range upper row has
a depression angle of 5.7◦. Each row surveys roughly half
of the range swath of the sonar, with the short range row



Fig. 5. Processing workflow for Kraken’s INSIGHT software.

covering a range of 2 to 5 times altitude and the long range
row covering a range of 5 to 10 times altitude. The center
frequency and bandwidth for each row are programmable
in software. The short and long range rows are operated
at center frequencies of 337 and 240 kHz, respectively, to
ensure that seabed echoes from each row do not interfere. As
shown in Fig. 1, the four receiver modules are arranged in
two rows of two modules. The vertically separated modules
form an interferometer that provides a precise measurement
of the angle of arrival of seabed echoes in the vertical plane.
Measurements of seabed relative bathymetry are obtained by
cross-correlating the complex SAS images from each row.

III. DATA PROCESSING

A. Workflow

Kraken’s INSIGHT processing software features a modular
architecture as shown in Fig. 5. The core processing steps
are numbered 1 – 5 in blue. Inputs consist of acoustic data
sampled by the sonar data acquisition system and navigation
data from two sources, the embedded rate gyros within the
sonar electronics pod and positioning data from the vehicle
navigation system. The outputs consist of imagery with a
constant resolution of 3 × 3 cm (range × cross-range) and co-
registered bathymetry. Images from two vertically displaced
arrays are used to form an interferometric image, which
produces bathymetric maps with a software configurable hor-
izontal resolution as fine as 6 × 6 cm. Larger bathymetric
resolution cells result in improved vertical accuracy as more
pixels are combined to obtain a depth measurement. The
bathymetric map is therefore typically formed at 25 × 25 cm
resolution, and this is the setting used for the benchmark data
in Fig. 4. A key feature of the software architecture is that
platform navigation data is only needed to georeference the
imagery and bathymetry. The motion estimation for synthetic
aperture focusing is fully self-contained, which simplifies the
system integration with the host system.

SAS is capable of producing detailed imagery with range-
independent resolution suitable for target detection and classi-
fication. In practice, operation onboard an AUV is constrained

by the processing power available to form the synthetic aper-
ture imagery in real-time and by the fact that vehicle trajecto-
ries often deviate significantly from an ideal linear track. The
SAS processor must accommodate large translational errors,
yaw oscillations, and a non-zero crab angle. Conventional
image formation algorithms require a trade-off between motion
tolerance, image quality, and processing speed. One of the
unique features of Kraken’s INSIGHT is that the exact same
algorithms and resolution settings are used in real-time as for
post-processing. Image formation is implemented efficiently
using a proprietary algorithm that achieves a computational
speed comparable to that of frequency domain algorithms
(e.g. range Doppler and ω-k wavenumber algorithms) while
retaining the accuracy of time domain backprojection. For
interferometry, another proprietary algorithm is employed
to robustly measure the relative bathymetry, i.e. the depth
of the seabed relative to the vehicle trajectory. Absolute
bathymetry is obtained by adding the vehicle depth to the
relative bathymetry and performing standard corrections for
tidal effects and refraction due to the sound velocity profile.

B. GPU Acceleration

All of the processing steps shown in Fig. 5 are performed
on commercial-off-the-shelf (COTS) embedded PC hardware
using NVIDIA GPU acceleration to achieve faster than real-
time performance for a double sided interferometric con-
figuration. One advantage of GPU technology is that it is
inherently scalable. For example, in a desktop or rack-mount
configuration, multiple cards may be interconnected to multi-
ply the processing power. The mobile versions of NVIDIA
GPUs are also widely available in embedded form factors
with industrial-grade environmental ratings. Use of the CUDA
parallel computing architecture ensures that the processing
software runs on a wide variety of NVIDIA GPU hardware,
allowing a seamless trade-off between power consumption and
processing speed.

Although GPUs frequently surpass CPUs in terms of float-
ing point operations per second (FLOPS) and energy effi-
ciency, some caveats must be kept in mind. The most obvious
constraint is that GPUs are only well suited for algorithms
that are highly parallelizable. GPUs typically contain on the
order of hundreds or thousands of processing cores. In order
to maximize data throughput, it is desirable to have many
cores executing similar instructions with simple branching
and control logic. Fortunately, synthetic aperture processing is
highly parallel in nature, with many identical computational
operations performed for each sonar ping or for each channel
of the receiver array.

In terms of computer architecture, CPUs retain the advan-
tage of being tightly integrated with random access memory
(RAM). Although GPUs have their own onboard RAM with
a similarly fast bandwidth, raw data to be processed typically
reside in CPU RAM and must be transferred to the GPU over a
slower interconnection network such as PCI Express (PCI-E),
which introduces latency. Much of the software development
effort therefore revolves around structuring the computation



and data transfer to minimize latency while maximizing the
utilization of the available GPU processing cores. Further
details are discussed below using the matched filter as an
illustrative example.

C. Matched Filter

Seabed reflectivity is measured with high range resolution
by transmitting a wide bandwidth signal of several millisec-
onds duration and applying pulse compression upon reception
of the seabed echoes. Compression is achieved by applying a
filter that is “matched” to the transmitted waveform. In other
words, the received signal is correlated with a replica of the
basebanded transmit pulse. The resulting filtering operation
maximizes the signal-to-noise ratio (SNR) in Gaussian additive
noise [9].

For the AquaPix® InSAS, the transmit pulses are linear
chirps of 40 kHz bandwidth centered on the carrier frequencies
of 240 and 337 kHz. After basebanding, the replica signal r(t)
is a complex exponential

r(t) =W (t) exp (i φ(t)) (1)

where W (t) is a shading function applied to control sidelobes,
and the phase φ(t) of the linear frequency modulated pulse is
given by

φ(t) = πβ

(
t2

T
− t

)
. (2)

In (2), β is the chirp bandwidth and T is transmit pulse
duration.

The matched filter is applied by zero padding the replica
signal and performing the correlation in the frequency domain
using the fast Fourier transform (FFT). Since the replica signal
is common to all pings, the zero padding, Fourier transform,
and complex conjugate operations are performed once. The
result is then stored in GPU memory. For each ping, the filter
must be applied to all 64 channels of the receiver array (32
channels for each of the upper and lower rows of the InSAS).
The sequence of operations is as follows:

1) Transfer one ping of data from CPU RAM to GPU RAM
2) Convert 16-bit integer data to 32-bit floating point
3) Apply FFT to each channel of data
4) Multiply each channel by the replica conjugate FFT
5) Apply inverse FFT to each channel of data
6) Copy the result to a block of GPU RAM

The above steps are repeated for each ping of data that
forms the SAS image (typically on the order of 100 to 200
pings depending on vehicle speed). Note that in the last
step, matched filtered data remains on the GPU for further
processing rather than being transferred to CPU RAM.

D. Implementation Details

The sonar data acquisition system records basebanded data
as 16-bit integer in-phase and quadrature components, whereas
the FFT algorithm expects floating point data. While the
conversion could take place on either the CPU or the GPU,
performing the conversion on the GPU is more efficient

because it minimizes the quantity of data to be transferred
across the relatively slow PCI-E interconnection. Nevertheless,
since each InSAS image requires approximately 1 GB of raw
16-bit data, a significant delay would occur if the transfer was
performed all at once. Fortunately, NVIDIA GPUs are capable
of concurrent data transfer and processing when transfers
occur between CPU and GPU RAM [10]. Concurrency is
achieved in software by creating two processing streams that
operate on alternate pings. Thus, data transfer in one stream
occurs simultaneously with data processing in the other stream.
In this manner, the latency of data transfer is effectively
hidden, as demonstrated in Section IV.

It is well known that the FFT algorithm is most efficient
when the transform size is a power of two, which can be
obtained by zero padding the data and replica signal as
necessary. A significant implementation detail is the ordering
of data in GPU RAM upon which the FFT and inverse FFT
are applied. Each ping of data is a two dimensional matrix
of complex values with one dimension representing time (or
range from the sonar) and the other dimension corresponding
to the array channel number. The CUDA FFT library supports
strided processing, which means that the FFT can be applied
across either rows or columns of the matrix by specifying the
offset, or stride, between consecutive data samples. Despite
this flexibility, the GPU-accelerated FFT is most efficient when
real and imaginary components are interleaved and the stride
length is set to one, i.e. when consecutive samples in time are
stored consecutively in GPU RAM.

Finally, the efficiency of the CUDA FFT is sensitive to the
alignment of data to internal GPU memory boundaries that are
powers of two in size. Therefore, zero padding each ping of
data to a power of two in length has the additional benefit of
aligning the transform with the memory structure of the GPU.
The consumption of GPU RAM is also reduced by utilizing
the CUDA FFT option to perform the transform “in place”
overwriting original data with transformed values.

IV. RESULTS

Processing times and output from the NVIDIA Visual
Profiler are presented for two types of GPUs, a desktop GTX
670 and a Jetson TX1, to illustrate trade-offs in processing
power and memory bandwidth for embedded applications. In
Figs. 6 and 7, the blue and purple bars labeled “Compute”
represent the utilization of GPU processing cores during
matched filtering of the long range sonar data. Steps 2 to 5
of Section III-C appear as six processing blocks instead of
four because the CUDA runtime environment implements the
size 16384 FFT and inverse FFT operations using cascades of
length 128 (16384 = 128× 128).

Above the compute section, gold bars indicate two types
of memory operations. The longer bars labeled “HtoD” (Host
to Device) represent transfers of sonar data from CPU RAM
to GPU RAM over the PCI-E bus (Step 1). The shorter bars
labeled “DtoD” (Device to Device) represent copies of filtered
data within GPU RAM (Step 6). Toward the bottom of each
figure, processing operations and data transfers are also shown



Fig. 6. NVIDIA Visual Profiler output for matched filtering using a GTX 670 GPU.

as they occur in their respective streams. The first two inactive
streams in each figure correspond to the processing of short
range sonar data, which is not shown.

A. Desktop GPU

Results for an Intel Core i7 desktop PC with an NVIDIA
GeForce GTX 670 GPU are presented in Fig. 6. The GTX
670 features 1344 CUDA cores, 2 GB of GDDR5 memory
onboard the GPU, and a memory bandwidth of 192.2 GB/s.
The matched filter processing time is approximately 1 ms
per ping. The entire InSAS processing chain (matched filter,
motion estimation, two SAS images per row, and bathymetric
processing) is completed in 2.41 s for a single side, compared
to 42 s of real-time for the vehicle to travel the along track
distance of 68 m in Fig. 3. Processing on the GTX 670 is
therefore 17.4 times faster than real-time, or 8.7 times faster
for a double sided system.

Fig. 6 demonstrates that processing data on a ping-by-
ping basis with two streams effectively hides the latency
of the CPU to GPU data transfer while maintaining a high
level of GPU utilization. The matched filter speed is limited
by the processing capacity of the GPU rather than by a
memory or data transfer bottleneck. Therefore, adding more
cores, for example by choosing the GTX 680 over the 670,
would improve the overall performance. However, beyond a
processing power increase of roughly 80% the computation
would be limited by memory bandwidth.

TABLE I
JETSON TX1 INSAS POWER CONSUMPTION

State Power (W)
Idle 2.5
Processing Peak 10.2
Processing Average 7.5

B. Ultra-Low Power Embedded GPU

Results for a Jetson TX1 module are shown in Fig. 7. The
TX1 features a quad-core ARM Cortex A57 CPU, 256 CUDA
cores, 4 GB of LPDDR4 memory that is divided between the
CPU and GPU, and a memory bandwidth of 25.6 GB/s. The
matched filter processing time is approximately 7 ms per ping.
The InSAS processing chain for a single side is completed in
9.55 s. Processing on the TX1 is therefore 4.4 times faster
than real-time, or 2.2 times faster for a double sided system.
In Fig. 7, the TX1 matched filter speed is also limited by GPU
processing capacity rather than memory throughput, which has
recently been doubled for the newer Jetson TX2 module.

In Table I, power measurements were performed during
InSAS processing with an AC electrical load meter. The
measurements include power consumed by the AC to DC
power supply for the Jetson TX1 board. One attractive feature
of the TX1 is that upon completion of processing, the power
consumption returns to the idle level of 2.5 watts almost
instantaneously. The average measurement is the average value
during InSAS processing, not counting time spent in the idle
state. For a double sided InSAS system, the TX1 would spend



Fig. 7. NVIDIA Visual Profiler output for matched filtering using a Jetson TX1 GPU.

TABLE II
INSAS PROCESSING TIME FOR BENCHMARK DATASET

GPU Elapsed Time (s) Faster Than Real-Time Ratio
GTX 670 2.41 17.4
Jetson TX1 9.55 4.4

roughly half the time with the GPU at idle, resulting in an
overall rate of energy consumption potentially as low as 5
watts depending on the nature of other tasks assigned to the
processor such as recording data, communicating with the
sonar data acquisition system, georeferencing, and interacting
with the vehicle control system. The processing times for both
GPUs are summarized in Table II for the single sided InSAS
benchmark dataset.

V. CONCLUSION

The combination of computationally efficient InSAS algo-
rithms and the development of ultra-low power GPUs make
it possible to perform the complete InSAS processing chain
at full resolution in real-time using extremely low energy
consumption. Several techniques were illustrated to optimize
the performance of GPU computation including stream pro-
cessing, concurrent data transfer and processing, data ordering
for fast Fourier transforms, and memory alignment. Execution
times and output from the NVIDIA Visual Profiler were
presented to illustrate trade-offs in processing power and
memory bandwidth for embedded applications. It was shown
that Kraken’s INSIGHT software performs faster than real-
time full resolution InSAS processing on the Jetson TX1
using an average power consumption of only 7.5 watts during

processing. Ultra-low power real-time InSAS processing is
therefore an enabling technology for the development of
intelligent and persistent AUVs that sense their environment
and adapt their behavior accordingly.
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